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What is “real” in modern physics?

“Reality” has turned out to be an unsuitable term

Classical properties of quantum systems are usually unfixed
and only determined (become “real”) through measurement

Pragmatic use of language: photons or quarks are taken to be
“real objects”, because that simplifies communication

Sociological aspect: new objects in physics evolve from
hypothetical via schematic until real

Physicists have agreed on hard (often statistical) criteria for the
acceptance of novel entities as being real



By the inventors of quantum theory:

“In a nutshell, | can indeed describe the whole thing as an
act of desperation. Because by nature | am a peaceful
person and disinclined to precarious adventures.”

Max Planck



By the inventors of quantum theory:

“In a nutshell, | can indeed describe the whole thing as an
act of desperation. Because by nature | am a peaceful
person and disinclined to precarious adventures.”

Max Planck

‘| think now | understand what's going on: When | look with
my left eye, then | notice a particle, but when | look with the
right eye, | see a wave. As soon as | open both eyes,
| go crazy!”

Wolfgang Pauli to Werner Heisenberg



ILLUSTRATION
Spooky quantum action at a distance
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John Steward Bell (1928-1990)
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Bell's Inequality

Embacher (2000)



linear
polarisiertes Licht

Polarisationsfilter
Stellung: a = 60°

Der Winkel zwischen der Polarisationsrichtung des einfallenden Lichts und
der Ausrichtung des Polarisationsfilters betragt in diesem Beispiel 30°.

Embacher (2000)
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__lo-Bl __P(aB) P B) | PCap)  P(op)
Iz 0 0 Iz

? ? ? ?
? ? ? ?
0 Iz Y2 0

The probabilities (P) for the passing through of:

» both photons (a,B)

+ only the left photon (a,7B)

« only the right photon (—a,B)
» none of the photons (—a,~B)



apply Bell to the case of photon
‘passing through’ probabilities:

P(a,B) = P(a,y) + P(B,7y)
for a tripel (a,3,y) of angles

maximal P(a,) requires a linear law
P(a,B) = V2 — 10784
P((X,_'B) = |o=Blgy
-la-B| < -Ja-y| +[B-y| V
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We can fill the table with the linear law

| la-Bl | _P(aB) | P(@B) | P(-ap) | P(ah)
Iz 0 0 1z

Iz Ve Ve Y3
Ve Y3 Y3 Ve
0 Iz Y2 0

the maximum allowed by local realism
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What does quantum theory tell ?
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The quantum formalism

Linearly polarized one-photon states

o) € St ccpt with polarization label « € S*

in homogeneous coordinates on R? ¢ C2 with
orthonormal basis {|h), |v)} of horizontally and vertically polarized states:

la) = cosalh) 4 sina|v)

Two-photon states (not all) aZ + a2 + a? + aﬁ =1
@) = a=|hh) + aj|hv) + a_|vh) + a) o)) € S3 c R*

are separable iff a=a) —aja = 0 & a==cico, ay =cy5p efc,i.e.

@) = 1B @) = (c1lh) + s1lv)) ® (calh) + 52lv)) € ST x 57
Other states are called entangled



Probabilities for a photon in state |¢) to pass / not pass a filter with orientation «

P(a) = ($NG[y) and  P(oa) = ([NZ[h)
with the observables (in the basis {|h), |v)})

o COSa COSa COSa Sin« 1( 14+ Ccos2a sin2«a
N% = la)(a| = ) T2 = 5( "
CoSa Sina Sina sin a 2 sin2a 1— cos?2a
sin a sin — COS« Sin 1—-cos2a —sin2
N = 1—l|a)al = asiha ey =1 _ o
— COSa Sina COS«a COS« —Sin2a 14 cos2«

being mutually orthogonal hermitian projectors

(NP?=ng, NgN*=o0, NL+N*=1

Probability for a photon in state |v) to pass through a filter with orientation « is thus

T :
o cosy COSa COSar  COSa Sina ) [ COSY 2
PM(Q) WML (sin7> (COSa sina sina sina)<sin7> = cos{a—7)



&) € S3 of the kind introduced earlier.

Let us consider two-photon states [v))

To compute the probability for the left photon to pass a filter with orientation «,
the relevant observable is Ny ®1 (the right photon is not observed!), so evaluate

P(a,-) = (N @1 |¥)

If we measure the left photon with a filter of orientation «
and we also measure the right photon with a filter of orientation 3,
the observable to quantify the probability for both to pass through is I‘I‘_’f_ ® I‘Iﬁ_

Hence, the different probabilities for the left and right photon to pass / not pass are
P(a, B) = (wIN% @ N5 v
P(a,=B) = (w|n% @ n?[y)
P(-a, ) = (9IN% @ N %))
P(=a,=8) = (¥IN% o nZjy)



In certain decays of exited atomic states,
a pair of photons is emitted (in opposing directions) in the entangled state

) = J5(1hh) + o)) # 18) ® )

In this state, the probability for the left photon to pass through a filter « is

P(a,) = 3({phl4{wvl)Nee1 (IBa)+lvv)) = (RN IR)+(@IN]0)) = 3

The interesting calculation is that of Py := P(«,3) and Py_ := P(a,—f):
((rh| 4+ (wo])NS @ N (kR + [vo))
(RN |AY (AN RY + (0| NG [o) (v N [v) 4 (RN o) (AN [o) + (0[N [ R) (v| 1| R))

((14 cos2a)(1+cos28) + (1— cos2a)(1F cos28) £ sin 2a sin 23 + sin 2« sin 23)

P_|_j: =

1
2
1
2
1
8

=

(1+cos2a cos2B £sin2a sin2p) = z(1+cos2(a—p)) = {

1
2
1
2
Likewise, due to symmetry, P+ = P, = %<1ic052(a—6))



Let us fill the table with the quantum law

| la-Bl __P(aB) | P(,"B) _P(-op) | P(xa )
Iz 0 0 Y2

78 Ve Ve VZ:
Ve VZ: VZ: Ve
0 Iz Y2 0

note that P(30°) = % > %



Check Bell’s inequality

P(a,B) = P(a,y) + P(3,7y)

for the quantum law
P(a,8) = %2 cos?(a—[3)
with a tripel (a,3,y) of angles

choose a=0°, 3=30°, y=60°



P(0°,30°) ? P(0°,60°) + P(30°,760°)

m

Ve

0

Y < Y8+ Y% w inequality is violated !
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Experimental reality: states cannot be entangled perfectly:

) = /p1l|hh) + /P2 lvv)  with  py+pr=1

previous (maximal) case was p; = po> = %

Repeat the computation:

((hh]v/p1 + (volv/p2)NG ® ML (VPilhh) 4 v/palow))

(p1(14 cos2a)(1+cos28) 4 p2(1— cos 2a) (1F cos 23) + 2./p1p2Sin 2a sin 2)3)
(1 £ cos2a cos 28 £ 2,/p1p2Sin 2a sin 28 4 (p1—p2)(COS 2 + €0s 213))

Bl D= N

this depends on « and 5 separately

plot P o = P44 [g=0 for p=p1 < %
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FIG. 10, Experimental results (zee Table V) for
Poxp(@) as compared to the limit of Bell and predictlions
of QM,
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What is so exciting about this?

P(a,*) = P(*,B) = 2, but P(a,B) # f(a) g(B) =» correlations
The correlations are nonlocal (filters may be widely separated)
The correlations are acausal (delayed-choice experiments)

If “polarization” is a real property of individual photons in an
entangled state, passing / no passing is predetermined

This explains correlations but also limits them! (Bell’'s theorem)

Quantum correlations exceed this limit = local realism is dead



Resolution of the contradiction:

Before passing the polarization filter the photons do not carry
a well defined polarization with them

Local hidden parameters (“elements of reality”) do not exist

“Polarization” is not a classical property of the photons,
hence Bell's inequality need not hold

Counterfactuality: unperformed experiments have no
outcome

Quantum correlations perfectly epitomize the quantum world
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